

rabbitpy: RabbitMQ Simplified

rabbitpy is a pure python, thread-safe 1, and pythonic BSD Licensed AMQP/RabbitMQ
library that supports Python 2.7+ and 3.4+. rabbitpy aims to provide a simple
and easy to use API for interfacing with RabbitMQ, minimizing the programming
overhead often found in other libraries.

[image: Version] [http://badge.fury.io/py/rabbitpy]

Installation

rabbitpy is available from the Python Package Index [https://pypi.org/project/rabbitpy/] and can be
installed by running easy_install rabbitpy or pip install rabbitpy

API Documentation

rabbitpy is designed to have as simple and pythonic of an API as possible while
still remaining true to RabbitMQ and to the AMQP 0-9-1 specification. There are
two basic ways to interact with rabbitpy, using the simple wrapper methods:

	Simple API Methods

And by using the core objects:

	AMQP Adapter

	Channel

	Connection

	Exceptions

	Exchange

	Message

	Queue

	Transactions

	1

	If you’re looking to use rabbitpy in a multi-threaded application, you should the notes about multi-threaded use in Multi-threaded Use Notes.

Examples

	Message Consumer

	Message Getter

	Declaring HA Queues

	Mandatory Publishing

	Transactional Publisher

Issues

Please report any issues to the Github repo at https://github.com/gmr/rabbitpy/issues

Source

rabbitpy source is available on Github at https://github.com/gmr/rabbitpy

Version History

See Version History

Inspiration

rabbitpy’s simple and more pythonic interface is inspired by Kenneth Reitz’s [https://github.com/kennethreitz/] awesome work on requests [http://docs.python-requests.org/en/latest/].

Indices and tables

	Index

	Module Index

	Search Page

Simple API Methods

rabbitpy’s simple API methods are meant for one off use, either in your apps or in
the python interpreter. For example, if your application publishes a single
message as part of its lifetime, rabbitpy.publish() should be enough
for almost any publishing concern. However if you are publishing more than
one message, it is not an efficient method to use as it connects and disconnects
from RabbitMQ on each invocation. rabbitpy.get() also connects and
disconnects on each invocation. rabbitpy.consume() does stay connected
as long as you’re iterating through the messages returned by it. Exiting the
generator will close the connection. For a more complete api, see the rabbitpy
core API.

Wrapper methods for easy access to common operations, making them both less
complex and less verbose for one off or simple use cases.

	
class rabbitpy.simple.SimpleChannel(uri)

	The rabbitpy.simple.Channel class creates a context manager
implementation for use on a single channel where the connection is
automatically created and managed for you.

Example:

import rabbitpy

with rabbitpy.SimpleChannel('amqp://localhost/%2f') as channel:
 queue = rabbitpy.Queue(channel, 'my-queue')

	Parameters

	uri (str [https://docs.python.org/2/library/functions.html#str]) – The AMQP URI to connect with. For URI options, see the
Connection class documentation.

	
rabbitpy.simple.consume(uri=None, queue_name=None, no_ack=False, prefetch=None, priority=None)

	Consume messages from the queue as a generator:

for message in rabbitpy.consume('amqp://localhost/%2F', 'my_queue'):
 message.ack()

	Parameters

	
	uri (str [https://docs.python.org/2/library/functions.html#str]) – AMQP connection URI

	queue_name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the queue to consume from

	no_ack (bool [https://docs.python.org/2/library/functions.html#bool]) – Do not require acknowledgements

	prefetch (int [https://docs.python.org/2/library/functions.html#int]) – Set a prefetch count for the channel

	priority (int [https://docs.python.org/2/library/functions.html#int]) – Set the consumer priority

	Return type

	Iterator

	Raises

	py:class:ValueError

	
rabbitpy.simple.create_direct_exchange(uri=None, exchange_name=None, durable=True)

	Create a direct exchange with RabbitMQ. This should only be used for
one-off operations.

	Parameters

	
	uri (str [https://docs.python.org/2/library/functions.html#str]) – AMQP URI to connect to

	exchange_name (str [https://docs.python.org/2/library/functions.html#str]) – The exchange name to create

	durable (bool [https://docs.python.org/2/library/functions.html#bool]) – Exchange should survive server restarts

	Raises

	ValueError

	Raises

	rabbitpy.RemoteClosedException

	
rabbitpy.simple.create_fanout_exchange(uri=None, exchange_name=None, durable=True)

	Create a fanout exchange with RabbitMQ. This should only be used for
one-off operations.

	Parameters

	
	uri (str [https://docs.python.org/2/library/functions.html#str]) – AMQP URI to connect to

	exchange_name (str [https://docs.python.org/2/library/functions.html#str]) – The exchange name to create

	durable (bool [https://docs.python.org/2/library/functions.html#bool]) – Exchange should survive server restarts

	Raises

	ValueError

	Raises

	rabbitpy.RemoteClosedException

	
rabbitpy.simple.create_headers_exchange(uri=None, exchange_name=None, durable=True)

	Create a headers exchange with RabbitMQ. This should only be used for
one-off operations.

	Parameters

	
	uri (str [https://docs.python.org/2/library/functions.html#str]) – AMQP URI to connect to

	exchange_name (str [https://docs.python.org/2/library/functions.html#str]) – The exchange name to create

	durable (bool [https://docs.python.org/2/library/functions.html#bool]) – Exchange should survive server restarts

	Raises

	ValueError

	Raises

	rabbitpy.RemoteClosedException

	
rabbitpy.simple.create_queue(uri=None, queue_name='', durable=True, auto_delete=False, max_length=None, message_ttl=None, expires=None, dead_letter_exchange=None, dead_letter_routing_key=None, arguments=None)

	Create a queue with RabbitMQ. This should only be used for one-off
operations. If a queue name is omitted, the name will be automatically
generated by RabbitMQ.

	Parameters

	
	uri (str [https://docs.python.org/2/library/functions.html#str]) – AMQP URI to connect to

	queue_name (str [https://docs.python.org/2/library/functions.html#str]) – The queue name to create

	durable (bool [https://docs.python.org/2/library/functions.html#bool]) – Indicates if the queue should survive a RabbitMQ is restart

	auto_delete (bool [https://docs.python.org/2/library/functions.html#bool]) – Automatically delete when all consumers disconnect

	max_length (int [https://docs.python.org/2/library/functions.html#int]) – Maximum queue length

	message_ttl (int [https://docs.python.org/2/library/functions.html#int]) – Time-to-live of a message in milliseconds

	expires (int [https://docs.python.org/2/library/functions.html#int]) – Milliseconds until a queue is removed after becoming idle

	dead_letter_exchange (str [https://docs.python.org/2/library/functions.html#str]) – Dead letter exchange for rejected messages

	dead_letter_routing_key (str [https://docs.python.org/2/library/functions.html#str]) – Routing key for dead lettered messages

	arguments (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Custom arguments for the queue

	Raises

	ValueError

	Raises

	rabbitpy.RemoteClosedException

	
rabbitpy.simple.create_topic_exchange(uri=None, exchange_name=None, durable=True)

	Create an exchange from RabbitMQ. This should only be used for one-off
operations.

	Parameters

	
	uri (str [https://docs.python.org/2/library/functions.html#str]) – AMQP URI to connect to

	exchange_name (str [https://docs.python.org/2/library/functions.html#str]) – The exchange name to create

	durable (bool [https://docs.python.org/2/library/functions.html#bool]) – Exchange should survive server restarts

	Raises

	ValueError

	Raises

	rabbitpy.RemoteClosedException

	
rabbitpy.simple.delete_exchange(uri=None, exchange_name=None)

	Delete an exchange from RabbitMQ. This should only be used for one-off
operations.

	Parameters

	
	uri (str [https://docs.python.org/2/library/functions.html#str]) – AMQP URI to connect to

	exchange_name (str [https://docs.python.org/2/library/functions.html#str]) – The exchange name to delete

	Raises

	ValueError

	Raises

	rabbitpy.RemoteClosedException

	
rabbitpy.simple.delete_queue(uri=None, queue_name=None)

	Delete a queue from RabbitMQ. This should only be used for one-off
operations.

	Parameters

	
	uri (str [https://docs.python.org/2/library/functions.html#str]) – AMQP URI to connect to

	queue_name (str [https://docs.python.org/2/library/functions.html#str]) – The queue name to delete

	Return type

	bool [https://docs.python.org/2/library/functions.html#bool]

	Raises

	ValueError

	Raises

	rabbitpy.RemoteClosedException

	
rabbitpy.simple.get(uri=None, queue_name=None)

	Get a message from RabbitMQ, auto-acknowledging with RabbitMQ if one
is returned.

Invoke directly as rabbitpy.get()

	Parameters

	
	uri (str [https://docs.python.org/2/library/functions.html#str]) – AMQP URI to connect to

	queue_name (str [https://docs.python.org/2/library/functions.html#str]) – The queue name to get the message from

	Return type

	py:class:rabbitpy.message.Message or None

	Raises

	py:class:ValueError

	
rabbitpy.simple.publish(uri=None, exchange_name=None, routing_key=None, body=None, properties=None, confirm=False)

	Publish a message to RabbitMQ. This should only be used for one-off
publishing, as you will suffer a performance penalty if you use it
repeatedly instead creating a connection and channel and publishing on that

	Parameters

	
	uri (str [https://docs.python.org/2/library/functions.html#str]) – AMQP URI to connect to

	exchange_name (str [https://docs.python.org/2/library/functions.html#str]) – The exchange to publish to

	routing_key (str [https://docs.python.org/2/library/functions.html#str]) – The routing_key to publish with

	body (str [https://docs.python.org/2/library/functions.html#str] or unicode or bytes or dict [https://docs.python.org/2/library/stdtypes.html#dict] or list) – The message body

	properties (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Dict representation of Basic.Properties

	confirm (bool [https://docs.python.org/2/library/functions.html#bool]) – Confirm this delivery with Publisher Confirms

	Return type

	bool [https://docs.python.org/2/library/functions.html#bool] or None [https://docs.python.org/2/library/constants.html#None]

AMQP Adapter

While the core rabbitpy API strives to provide an easy to use, Pythonic interface
for RabbitMQ, some developers may prefer a less opinionated AMQP interface. The
rabbitpy.AMQP adapter provides a more traditional AMQP client library
API seen in libraries like pika [http://pika.readthedocs.org].

New in version 0.26.

Example

The following example will connect to RabbitMQ and use the rabbitpy.AMQP
adapter to consume and acknowledge messages.

import rabbitpy

with rabbitpy.Connection() as conn:
 with conn.channel() as channel:
 amqp = rabbitpy.AMQP(channel)

 for message in amqp.basic_consume('queue-name'):
 print(message)

API Documentation

	
class rabbitpy.AMQP(channel)

	The AMQP Adapter provides a more generic, non-opinionated interface to
RabbitMQ by providing methods that map to the AMQP API.

	Parameters

	channel (rabbitmq.channel.Channel) – The channel to use

	
basic_ack(delivery_tag=0, multiple=False)

	Acknowledge one or more messages

This method acknowledges one or more messages delivered via the Deliver
or Get-Ok methods. The client can ask to confirm a single message or a
set of messages up to and including a specific message.

	Parameters

	
	delivery_tag (int|long) – Server-assigned delivery tag

	multiple (bool [https://docs.python.org/2/library/functions.html#bool]) – Acknowledge multiple messages

	
basic_cancel(consumer_tag='', nowait=False)

	End a queue consumer

This method cancels a consumer. This does not affect already delivered
messages, but it does mean the server will not send any more messages
for that consumer. The client may receive an arbitrary number of
messages in between sending the cancel method and receiving the cancel-
ok reply.

	Parameters

	
	consumer_tag (str [https://docs.python.org/2/library/functions.html#str]) – Consumer tag

	nowait (bool [https://docs.python.org/2/library/functions.html#bool]) – Do not send a reply method

	
basic_consume(queue='', consumer_tag='', no_local=False, no_ack=False, exclusive=False, nowait=False, arguments=None)

	Start a queue consumer

This method asks the server to start a “consumer”, which is a transient
request for messages from a specific queue. Consumers last as long as
the channel they were declared on, or until the client cancels them.

This method will act as an generator, returning messages as they are
delivered from the server.

Example use:

for message in basic_consume(queue_name):
 print message.body
 message.ack()

	Parameters

	
	queue (str [https://docs.python.org/2/library/functions.html#str]) – The queue name to consume from

	consumer_tag (str [https://docs.python.org/2/library/functions.html#str]) – The consumer tag

	no_local (bool [https://docs.python.org/2/library/functions.html#bool]) – Do not deliver own messages

	no_ack (bool [https://docs.python.org/2/library/functions.html#bool]) – No acknowledgement needed

	exclusive (bool [https://docs.python.org/2/library/functions.html#bool]) – Request exclusive access

	nowait (bool [https://docs.python.org/2/library/functions.html#bool]) – Do not send a reply method

	arguments (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Arguments for declaration

	
basic_get(queue='', no_ack=False)

	Direct access to a queue

This method provides a direct access to the messages in a queue using a
synchronous dialogue that is designed for specific types of application
where synchronous functionality is more important than performance.

	Parameters

	
	queue (str [https://docs.python.org/2/library/functions.html#str]) – The queue name

	no_ack (bool [https://docs.python.org/2/library/functions.html#bool]) – No acknowledgement needed

	
basic_nack(delivery_tag=0, multiple=False, requeue=True)

	Reject one or more incoming messages.

This method allows a client to reject one or more incoming messages. It
can be used to interrupt and cancel large incoming messages, or return
untreatable messages to their original queue. This method is also used
by the server to inform publishers on channels in confirm mode of
unhandled messages. If a publisher receives this method, it probably
needs to republish the offending messages.

	Parameters

	
	delivery_tag (int|long) – Server-assigned delivery tag

	multiple (bool [https://docs.python.org/2/library/functions.html#bool]) – Reject multiple messages

	requeue (bool [https://docs.python.org/2/library/functions.html#bool]) – Requeue the message

	
basic_publish(exchange='', routing_key='', body='', properties=None, mandatory=False, immediate=False)

	Publish a message

This method publishes a message to a specific exchange. The message
will be routed to queues as defined by the exchange configuration and
distributed to any active consumers when the transaction, if any, is
committed.

	Parameters

	
	exchange (str [https://docs.python.org/2/library/functions.html#str]) – The exchange name

	routing_key (str [https://docs.python.org/2/library/functions.html#str]) – Message routing key

	body (str|bytes) – The message body

	properties (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – AMQP message properties

	mandatory (bool [https://docs.python.org/2/library/functions.html#bool]) – Indicate mandatory routing

	immediate (bool [https://docs.python.org/2/library/functions.html#bool]) – Request immediate delivery

	Returns

	bool or None

	
basic_qos(prefetch_size=0, prefetch_count=0, global_flag=False)

	Specify quality of service

This method requests a specific quality of service. The QoS can be
specified for the current channel or for all channels on the
connection. The particular properties and semantics of a qos method
always depend on the content class semantics. Though the qos method
could in principle apply to both peers, it is currently meaningful only
for the server.

	Parameters

	
	prefetch_size (int|long) – Prefetch window in octets

	prefetch_count (int [https://docs.python.org/2/library/functions.html#int]) – Prefetch window in messages

	global_flag (bool [https://docs.python.org/2/library/functions.html#bool]) – Apply to entire connection

	
basic_recover(requeue=False)

	Redeliver unacknowledged messages

This method asks the server to redeliver all unacknowledged messages on
a specified channel. Zero or more messages may be redelivered. This
method replaces the asynchronous Recover.

	Parameters

	requeue (bool [https://docs.python.org/2/library/functions.html#bool]) – Requeue the message

	
basic_reject(delivery_tag=0, requeue=True)

	Reject an incoming message

This method allows a client to reject a message. It can be used to
interrupt and cancel large incoming messages, or return untreatable
messages to their original queue.

	Parameters

	
	delivery_tag (int|long) – Server-assigned delivery tag

	requeue (bool [https://docs.python.org/2/library/functions.html#bool]) – Requeue the message

	
confirm_select()

	This method sets the channel to use publisher acknowledgements. The
client can only use this method on a non-transactional channel.

	
exchange_bind(destination='', source='', routing_key='', nowait=False, arguments=None)

	Bind exchange to an exchange.

This method binds an exchange to an exchange.

	Parameters

	
	destination (str [https://docs.python.org/2/library/functions.html#str]) – The destination exchange name

	source (str [https://docs.python.org/2/library/functions.html#str]) – The source exchange name

	routing_key (str [https://docs.python.org/2/library/functions.html#str]) – The routing key to bind with

	nowait (bool [https://docs.python.org/2/library/functions.html#bool]) – Do not send a reply method

	arguments (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Optional arguments

	
exchange_declare(exchange='', exchange_type='direct', passive=False, durable=False, auto_delete=False, internal=False, nowait=False, arguments=None)

	Verify exchange exists, create if needed

This method creates an exchange if it does not already exist, and if
the exchange exists, verifies that it is of the correct and expected
class.

	Parameters

	
	exchange (str [https://docs.python.org/2/library/functions.html#str]) – The exchange name

	exchange_type (str [https://docs.python.org/2/library/functions.html#str]) – Exchange type

	passive (bool [https://docs.python.org/2/library/functions.html#bool]) – Do not create exchange

	durable (bool [https://docs.python.org/2/library/functions.html#bool]) – Request a durable exchange

	auto_delete (bool [https://docs.python.org/2/library/functions.html#bool]) – Automatically delete when not in use

	internal (bool [https://docs.python.org/2/library/functions.html#bool]) – Deprecated

	nowait (bool [https://docs.python.org/2/library/functions.html#bool]) – Do not send a reply method

	arguments (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Arguments for declaration

	
exchange_delete(exchange='', if_unused=False, nowait=False)

	Delete an exchange

This method deletes an exchange. When an exchange is deleted all queue
bindings on the exchange are cancelled.

	Parameters

	
	exchange (str [https://docs.python.org/2/library/functions.html#str]) – The exchange name

	if_unused (bool [https://docs.python.org/2/library/functions.html#bool]) – Delete only if unused

	nowait (bool [https://docs.python.org/2/library/functions.html#bool]) – Do not send a reply method

	
exchange_unbind(destination='', source='', routing_key='', nowait=False, arguments=None)

	Unbind an exchange from an exchange.

This method unbinds an exchange from an exchange.

	Parameters

	
	destination (str [https://docs.python.org/2/library/functions.html#str]) – The destination exchange name

	source (str [https://docs.python.org/2/library/functions.html#str]) – The source exchange name

	routing_key (str [https://docs.python.org/2/library/functions.html#str]) – The routing key to bind with

	nowait (bool [https://docs.python.org/2/library/functions.html#bool]) – Do not send a reply method

	arguments (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Optional arguments

	
queue_bind(queue='', exchange='', routing_key='', nowait=False, arguments=None)

	Bind queue to an exchange

This method binds a queue to an exchange. Until a queue is bound it
will not receive any messages. In a classic messaging model, store-and-
forward queues are bound to a direct exchange and subscription queues
are bound to a topic exchange.

	Parameters

	
	queue (str [https://docs.python.org/2/library/functions.html#str]) – The queue name

	exchange (str [https://docs.python.org/2/library/functions.html#str]) – Name of the exchange to bind to

	routing_key (str [https://docs.python.org/2/library/functions.html#str]) – Message routing key

	nowait (bool [https://docs.python.org/2/library/functions.html#bool]) – Do not send a reply method

	arguments (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Arguments for binding

	
queue_declare(queue='', passive=False, durable=False, exclusive=False, auto_delete=False, nowait=False, arguments=None)

	Declare queue, create if needed

This method creates or checks a queue. When creating a new queue the
client can specify various properties that control the durability of
the queue and its contents, and the level of sharing for the queue.

	Parameters

	
	queue (str [https://docs.python.org/2/library/functions.html#str]) – The queue name

	passive (bool [https://docs.python.org/2/library/functions.html#bool]) – Do not create queue

	durable (bool [https://docs.python.org/2/library/functions.html#bool]) – Request a durable queue

	exclusive (bool [https://docs.python.org/2/library/functions.html#bool]) – Request an exclusive queue

	auto_delete (bool [https://docs.python.org/2/library/functions.html#bool]) – Auto-delete queue when unused

	nowait (bool [https://docs.python.org/2/library/functions.html#bool]) – Do not send a reply method

	arguments (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Arguments for declaration

	
queue_delete(queue='', if_unused=False, if_empty=False, nowait=False)

	Delete a queue

This method deletes a queue. When a queue is deleted any pending
messages are sent to a dead-letter queue if this is defined in the
server configuration, and all consumers on the queue are cancelled.

	Parameters

	
	queue (str [https://docs.python.org/2/library/functions.html#str]) – The queue name

	if_unused (bool [https://docs.python.org/2/library/functions.html#bool]) – Delete only if unused

	if_empty (bool [https://docs.python.org/2/library/functions.html#bool]) – Delete only if empty

	nowait (bool [https://docs.python.org/2/library/functions.html#bool]) – Do not send a reply method

	
queue_purge(queue='', nowait=False)

	Purge a queue

This method removes all messages from a queue which are not awaiting
acknowledgment.

	Parameters

	
	queue (str [https://docs.python.org/2/library/functions.html#str]) – The queue name

	nowait (bool [https://docs.python.org/2/library/functions.html#bool]) – Do not send a reply method

	
queue_unbind(queue='', exchange='', routing_key='', arguments=None)

	Unbind a queue from an exchange

This method unbinds a queue from an exchange.

	Parameters

	
	queue (str [https://docs.python.org/2/library/functions.html#str]) – The queue name

	exchange (str [https://docs.python.org/2/library/functions.html#str]) – The exchange name

	routing_key (str [https://docs.python.org/2/library/functions.html#str]) – Routing key of binding

	arguments (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Arguments of binding

	
tx_commit()

	Commit the current transaction

This method commits all message publications and acknowledgments
performed in the current transaction. A new transaction starts
immediately after a commit.

	
tx_rollback()

	Abandon the current transaction

This method abandons all message publications and acknowledgments
performed in the current transaction. A new transaction starts
immediately after a rollback. Note that unacked messages will not be
automatically redelivered by rollback; if that is required an explicit
recover call should be issued.

	
tx_select()

	Select standard transaction mode

This method sets the channel to use standard transactions. The client
must use this method at least once on a channel before using the Commit
or Rollback methods.

Channel

A Channel is created on an active connection using the Connection.channel() method. Channels can act as normal Python objects:

conn = rabbitpy.Connection()
chan = conn.channel()
chan.enable_publisher_confirms()
chan.close()

or as a Python context manager (See PEP 0343 [https://www.python.org/dev/peps/pep-0343]):

with rabbitpy.Connection() as conn:
 with conn.channel() as chan:
 chan.enable_publisher_confirms()

When they are used as a context manager with the with statement, when your code exits the block, the channel will automatically close, issuing a clean shutdown with RabbitMQ via the Channel.Close RPC request.

You should be aware that if you perform actions on a channel with exchanges, queues, messages or transactions that RabbitMQ does not like, it will close the channel by sending an AMQP Channel.Close RPC request to your application. Upon receipt of such a request, rabbitpy will raise the appropriate exception referenced in the request.

API Documentation

	
class rabbitpy.Channel(channel_id, server_capabilities, events, exception_queue, read_queue, write_queue, maximum_frame_size, write_trigger, connection, blocking_read=False)

	The Channel object is the communications object used by Exchanges,
Messages, Queues, and Transactions. It is created by invoking the
rabbitpy.Connection.channel() method. It can act as a context
manager, allowing for quick shorthand use:

with connection.channel():
 # Do something

To create a new channel, invoke
py:meth:~rabbitpy.connection.Connection.channel()

To improve performance, pass blocking_read to True. Note that doing
so prevents KeyboardInterrupt/CTRL-C from exiting the Python
interpreter.

	Parameters

	
	channel_id (int [https://docs.python.org/2/library/functions.html#int]) – The channel # to use for this instance

	server_capabilities (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Features the server supports

	events (rabbitpy.Events) – Event management object

	exception_queue (queue.Queue) – Exception queue

	read_queue (queue.Queue) – Queue to read pending frames from

	write_queue (queue.Queue) – Queue to write pending AMQP objs to

	maximum_frame_size (int [https://docs.python.org/2/library/functions.html#int]) – The max frame size for msg bodies

	write_trigger (socket) – Write to this socket to break IO waiting

	blocking_read (bool [https://docs.python.org/2/library/functions.html#bool]) – Use blocking Queue.get to improve performance

	Raises

	rabbitpy.exceptions.RemoteClosedChannelException

	Raises

	rabbitpy.exceptions.AMQPException

	
close()

	Close the channel, cancelling any active consumers, purging the read
queue, while looking to see if a Basic.Nack should be sent, sending it
if so.

	
enable_publisher_confirms()

	Turn on Publisher Confirms. If confirms are turned on, the
Message.publish command will return a bool indicating if a message has
been successfully published.

	
id

	Return the channel id

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

	
maximum_frame_size

	Return the AMQP maximum frame size

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

	
open()

	Open the channel, invoked directly upon creation by the Connection

	
prefetch_count(value, all_channels=False)

	Set a prefetch count for the channel (or all channels on the same
connection).

	Parameters

	
	value (int [https://docs.python.org/2/library/functions.html#int]) – The prefetch count to set

	all_channels (bool [https://docs.python.org/2/library/functions.html#bool]) – Set the prefetch count on all channels on the
same connection

	
prefetch_size(value, all_channels=False)

	Set a prefetch size in bytes for the channel (or all channels on the
same connection).

	Parameters

	
	value (int [https://docs.python.org/2/library/functions.html#int]) – The prefetch size to set

	all_channels (bool [https://docs.python.org/2/library/functions.html#bool]) – Set the prefetch size on all channels on the
same connection

	
publisher_confirms

	Returns True if publisher confirms are enabled.

	Return type

	bool [https://docs.python.org/2/library/functions.html#bool]

	
recover(requeue=False)

	Recover all unacknowledged messages that are associated with this
channel.

	Parameters

	requeue (bool [https://docs.python.org/2/library/functions.html#bool]) – Requeue the message

Connection

rabbitpy Connection objects are used to connect to RabbitMQ. They provide a thread-safe connection to RabbitMQ that is used to authenticate and send all channel based RPC commands over. Connections use AMQP URI syntax [http://www.rabbitmq.com/uri-spec.html] for specifying the all of the connection information, including any connection negotiation options, such as the heartbeat interval. For more information on the various query parameters that can be specified, see the official documentation [http://www.rabbitmq.com/uri-query-parameters.html].

A Connection [https://docs.python.org/2/library/multiprocessing.html#Connection] is a normal python object that you use:

conn = rabbitpy.Connection('amqp://guest:guest@localhost:5672/%2F')
conn.close()

or it can be used as a Python context manager (See PEP 0343 [https://www.python.org/dev/peps/pep-0343]):

with rabbitpy.Connection() as conn:
 # Foo

When it is used as a context manager with the with statement, when your code exits the block, the connection will automatically close.

If RabbitMQ remotely closes your connection via the AMQP Connection.Close RPC request, rabbitpy will raise the appropriate exception referenced in the request.

If heartbeats are enabled (default: 5 minutes) and RabbitMQ does not send a heartbeat request in >= 2 heartbeat intervals, a ConnectionResetException will be raised.

API Documentation

	
class rabbitpy.Connection(url=None)

	The Connection object is responsible for negotiating a connection and
managing its state. When creating a new instance of the Connection object,
if no URL is passed in, it uses the default connection parameters of
localhost port 5672, virtual host / with the guest/guest username/password
combination. Represented as a AMQP URL the connection information is:

amqp://guest:guest@localhost:5672/%2F

To use a different connection, pass in a AMQP URL that follows the standard
format:

[scheme]://[username]:[password]@[host]:[port]/[virtual_host]

The following example connects to the test virtual host on a RabbitMQ
server running at 192.168.1.200 port 5672 as the user “www” and the
password rabbitmq:

amqp://admin192.168.1.200:5672/test

Note

You should be aware that most connection exceptions may be raised
during the use of all functionality in the library.

	Parameters

	url (str [https://docs.python.org/2/library/functions.html#str]) – The AMQP connection URL

	Raises

	rabbitpy.exceptions.AMQPException

	Raises

	rabbitpy.exceptions.ConnectionException

	Raises

	rabbitpy.exceptions.ConnectionResetException

	Raises

	rabbitpy.exceptions.RemoteClosedException

	
args

	Return the connection arguments.

	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	
blocked

	Indicates if the connection is blocked from publishing by RabbitMQ.

This flag indicates communication from RabbitMQ that the connection is
blocked using the Connection.Blocked RPC notification from RabbitMQ
that was added in RabbitMQ 3.2.

	Return type

	bool [https://docs.python.org/2/library/functions.html#bool]

	
capabilities

	Return the RabbitMQ Server capabilities from the connection
negotiation process.

	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	
channel(blocking_read=False)

	Create a new channel

If blocking_read is True, the cross-thread Queue.get use will use
blocking operations that lower resource utilization and increase
throughput. However, due to how Python’s blocking Queue.get is
implemented, KeyboardInterrupt is not raised when CTRL-C is
pressed.

	Parameters

	blocking_read (bool [https://docs.python.org/2/library/functions.html#bool]) – Enable for higher throughput

	Raises

	rabbitpy.exceptions.AMQPException

	Raises

	rabbitpy.exceptions.RemoteClosedChannelException

	
close()

	Close the connection, including all open channels.

	Raises

	rabbitpy.exceptions.ConnectionClosed

	
server_properties

	Return the RabbitMQ Server properties from the connection
negotiation process.

	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]

Exceptions

rabbitpy contains two types of exceptions, exceptions that are specific to rabbitpy and exceptions that are raised as a result of a Channel or Connection closure from RabbitMQ. These exceptions will be raised to let you know when you have performed an action like redeclared a pre-existing queue with different values. Consider the following example:

>>> import rabbitpy
>>>
>>> with rabbitpy.Connection() as connection:
... with connection.channel() as channel:
... queue = rabbitpy.Queue(channel, 'exception-test')
... queue.durable = True
... queue.declare()
... queue.durable = False
... queue.declare()
...
Traceback (most recent call last):
 File "<stdin>", line 7, in <module>
 File "rabbitpy/connection.py", line 131, in __exit__
 self._shutdown_connection()
 File "rabbitpy/connection.py", line 469, in _shutdown_connection
 self._channels[chan_id].close()
 File "rabbitpy/channel.py", line 124, in close
 super(Channel, self).close()
 File "rabbitpy/base.py", line 185, in close
 self.rpc(frame_value)
 File "rabbitpy/base.py", line 199, in rpc
 self._write_frame(frame_value)
 File "rabbitpy/base.py", line 311, in _write_frame
 raise exception
rabbitpy.exceptions.AMQPPreconditionFailed: <pamqp.specification.Channel.Close object at 0x10e86bd50>

In this example, the channel that was created on the second line was closed and RabbitMQ is raising the AMQPPreconditionFailed exception via RPC sent to your application using the AMQP Channel.Close method.

Exceptions that may be raised by rabbitpy during use

	
exception rabbitpy.exceptions.AMQPAccessRefused

	The client attempted to work with a server entity to which it has no access
due to security settings.

	
exception rabbitpy.exceptions.AMQPChannelError

	The client attempted to work with a channel that had not been correctly
opened. This most likely indicates a fault in the client layer.

	
exception rabbitpy.exceptions.AMQPCommandInvalid

	The client sent an invalid sequence of frames, attempting to perform an
operation that was considered invalid by the server. This usually implies a
programming error in the client.

	
exception rabbitpy.exceptions.AMQPConnectionForced

	An operator intervened to close the connection for some reason. The client
may retry at some later date.

	
exception rabbitpy.exceptions.AMQPContentTooLarge

	The client attempted to transfer content larger than the server could
accept at the present time. The client may retry at a later time.

	
exception rabbitpy.exceptions.AMQPException

	Base exception of all AMQP exceptions.

	
exception rabbitpy.exceptions.AMQPFrameError

	The sender sent a malformed frame that the recipient could not decode. This
strongly implies a programming error in the sending peer.

	
exception rabbitpy.exceptions.AMQPInternalError

	The server could not complete the method because of an internal error. The
server may require intervention by an operator in order to resume normal
operations.

	
exception rabbitpy.exceptions.AMQPInvalidPath

	The client tried to work with an unknown virtual host.

	
exception rabbitpy.exceptions.AMQPNoConsumers

	When the exchange cannot deliver to a consumer when the immediate flag is
set. As a result of pending data on the queue or the absence of any
consumers of the queue.

	
exception rabbitpy.exceptions.AMQPNoRoute

	Undocumented AMQP Soft Error

	
exception rabbitpy.exceptions.AMQPNotAllowed

	The client tried to work with some entity in a manner that is prohibited by
the server, due to security settings or by some other criteria.

	
exception rabbitpy.exceptions.AMQPNotFound

	The client attempted to work with a server entity that does not exist.

	
exception rabbitpy.exceptions.AMQPNotImplemented

	The client tried to use functionality that is not implemented in the
server.

	
exception rabbitpy.exceptions.AMQPPreconditionFailed

	The client requested a method that was not allowed because some
precondition failed.

	
exception rabbitpy.exceptions.AMQPResourceError

	The server could not complete the method because it lacked sufficient
resources. This may be due to the client creating too many of some type of
entity.

	
exception rabbitpy.exceptions.AMQPResourceLocked

	The client attempted to work with a server entity to which it has no access
because another client is working with it.

	
exception rabbitpy.exceptions.AMQPSyntaxError

	The sender sent a frame that contained illegal values for one or more
fields. This strongly implies a programming error in the sending peer.

	
exception rabbitpy.exceptions.AMQPUnexpectedFrame

	The peer sent a frame that was not expected, usually in the context of a
content header and body. This strongly indicates a fault in the peer’s
content processing.

	
exception rabbitpy.exceptions.ActionException

	Raised when an action is taken on a Rabbitpy object that is not
supported due to the state of the object. An example would be trying to
ack a Message object when the message object was locally created and not
sent by RabbitMQ via an AMQP Basic.Get or Basic.Consume.

	
exception rabbitpy.exceptions.ChannelClosedException

	Raised when an action is attempted on a channel that is closed.

	
exception rabbitpy.exceptions.ConnectionClosed

	Raised if a connection.close() is invoked when the connection is not
open.

	
exception rabbitpy.exceptions.ConnectionException

	Raised when Rabbitpy can not connect to the specified server and if
a connection fails and the RabbitMQ version does not support the
authentication_failure_close feature added in RabbitMQ 3.2.

	
exception rabbitpy.exceptions.ConnectionResetException

	Raised if the socket level connection was reset. This can happen due
to the loss of network connection or socket timeout, or more than 2
missed heartbeat intervals if heartbeats are enabled.

	
exception rabbitpy.exceptions.MessageReturnedException

	Raised if the RabbitMQ sends a message back to a publisher via
the Basic.Return RPC call.

	
exception rabbitpy.exceptions.NoActiveTransactionError

	Raised when a transaction method is issued but the transaction has not
been initiated.

	
exception rabbitpy.exceptions.NotConsumingError

	Raised Queue.cancel_consumer() is invoked but the queue is not
actively consuming.

	
exception rabbitpy.exceptions.NotSupportedError

	Raised when a feature is requested that is not supported by the RabbitMQ
server.

	
exception rabbitpy.exceptions.RabbitpyException

	Base exception of all rabbitpy exceptions.

	
exception rabbitpy.exceptions.RemoteCancellationException

	Raised if RabbitMQ cancels an active consumer

	
exception rabbitpy.exceptions.RemoteClosedChannelException

	Raised if RabbitMQ closes the channel and the reply_code in the
Channel.Close RPC request does not have a mapped exception in Rabbitpy.

	
exception rabbitpy.exceptions.RemoteClosedException

	Raised if RabbitMQ closes the connection and the reply_code in the
Connection.Close RPC request does not have a mapped exception in Rabbitpy.

	
exception rabbitpy.exceptions.TooManyChannelsError

	Raised if an application attempts to create a channel, exceeding the
maximum number of channels (MAXINT or 2,147,483,647) available for a
single connection. Note that each time a channel object is created, it will
take a new channel id. If you create and destroy 2,147,483,648 channels,
this exception will be raised.

	
exception rabbitpy.exceptions.UnexpectedResponseError

	Raised when an RPC call is made to RabbitMQ but the response it sent
back is not recognized.

Exchange

The Exchange class is used to work with RabbitMQ exchanges on an open channel. The following example shows how you can create an exchange using the rabbitpy.Exchange class.

import rabbitpy

with rabbitpy.Connection() as connection:
 with connection.channel() as channel:
 exchange = rabbitpy.Exchange(channel, 'my-exchange')
 exchange.declare()

In addition, there are four convenience classes (DirectExchange, FanoutExchange, HeadersExchange, and TopicExchange) for creating each built-in exchange type in RabbitMQ.

API Documentation

	
class rabbitpy.Exchange(channel, name, exchange_type='direct', durable=False, auto_delete=False, arguments=None)

	Exchange class for interacting with an exchange in RabbitMQ including
declaration, binding and deletion.

	Parameters

	
	channel (rabbitpy.channel.Channel) – The channel object to communicate on

	name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the exchange

	exchange_type (str [https://docs.python.org/2/library/functions.html#str]) – The exchange type

	durable (bool [https://docs.python.org/2/library/functions.html#bool]) – Request a durable exchange

	auto_delete (bool [https://docs.python.org/2/library/functions.html#bool]) – Automatically delete when not in use

	arguments (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Optional key/value arguments

	
bind(source, routing_key=None)

	Bind to another exchange with the routing key.

	Parameters

	
	source (str or rabbitpy.Exchange) – The exchange to bind to

	routing_key (str [https://docs.python.org/2/library/functions.html#str]) – The routing key to use

	
declare(passive=False)

	Declare the exchange with RabbitMQ. If passive is True and the
command arguments do not match, the channel will be closed.

	Parameters

	passive (bool [https://docs.python.org/2/library/functions.html#bool]) – Do not actually create the exchange

	
delete(if_unused=False)

	Delete the exchange from RabbitMQ.

	Parameters

	if_unused (bool [https://docs.python.org/2/library/functions.html#bool]) – Delete only if unused

	
unbind(source, routing_key=None)

	Unbind the exchange from the source exchange with the
routing key. If routing key is None, use the queue or exchange name.

	Parameters

	
	source (str or rabbitpy.Exchange) – The exchange to unbind from

	routing_key (str [https://docs.python.org/2/library/functions.html#str]) – The routing key that binds them

	
class rabbitpy.DirectExchange(channel, name, durable=False, auto_delete=False, arguments=None)

	The DirectExchange class is used for interacting with direct exchanges
only.

	Parameters

	
	channel (rabbitpy.channel.Channel) – The channel object to communicate on

	name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the exchange

	durable (bool [https://docs.python.org/2/library/functions.html#bool]) – Request a durable exchange

	auto_delete (bool [https://docs.python.org/2/library/functions.html#bool]) – Automatically delete when not in use

	arguments (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Optional key/value arguments

	
bind(source, routing_key=None)

	Bind to another exchange with the routing key.

	Parameters

	
	source (str or rabbitpy.Exchange) – The exchange to bind to

	routing_key (str [https://docs.python.org/2/library/functions.html#str]) – The routing key to use

	
declare(passive=False)

	Declare the exchange with RabbitMQ. If passive is True and the
command arguments do not match, the channel will be closed.

	Parameters

	passive (bool [https://docs.python.org/2/library/functions.html#bool]) – Do not actually create the exchange

	
delete(if_unused=False)

	Delete the exchange from RabbitMQ.

	Parameters

	if_unused (bool [https://docs.python.org/2/library/functions.html#bool]) – Delete only if unused

	
unbind(source, routing_key=None)

	Unbind the exchange from the source exchange with the
routing key. If routing key is None, use the queue or exchange name.

	Parameters

	
	source (str or rabbitpy.Exchange) – The exchange to unbind from

	routing_key (str [https://docs.python.org/2/library/functions.html#str]) – The routing key that binds them

	
class rabbitpy.FanoutExchange(channel, name, durable=False, auto_delete=False, arguments=None)

	The FanoutExchange class is used for interacting with fanout exchanges
only.

	Parameters

	
	channel (rabbitpy.channel.Channel) – The channel object to communicate on

	name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the exchange

	durable (bool [https://docs.python.org/2/library/functions.html#bool]) – Request a durable exchange

	auto_delete (bool [https://docs.python.org/2/library/functions.html#bool]) – Automatically delete when not in use

	arguments (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Optional key/value arguments

	
bind(source, routing_key=None)

	Bind to another exchange with the routing key.

	Parameters

	
	source (str or rabbitpy.Exchange) – The exchange to bind to

	routing_key (str [https://docs.python.org/2/library/functions.html#str]) – The routing key to use

	
declare(passive=False)

	Declare the exchange with RabbitMQ. If passive is True and the
command arguments do not match, the channel will be closed.

	Parameters

	passive (bool [https://docs.python.org/2/library/functions.html#bool]) – Do not actually create the exchange

	
delete(if_unused=False)

	Delete the exchange from RabbitMQ.

	Parameters

	if_unused (bool [https://docs.python.org/2/library/functions.html#bool]) – Delete only if unused

	
unbind(source, routing_key=None)

	Unbind the exchange from the source exchange with the
routing key. If routing key is None, use the queue or exchange name.

	Parameters

	
	source (str or rabbitpy.Exchange) – The exchange to unbind from

	routing_key (str [https://docs.python.org/2/library/functions.html#str]) – The routing key that binds them

	
class rabbitpy.HeadersExchange(channel, name, durable=False, auto_delete=False, arguments=None)

	The HeadersExchange class is used for interacting with direct exchanges
only.

	Parameters

	
	channel (rabbitpy.channel.Channel) – The channel object to communicate on

	name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the exchange

	durable (bool [https://docs.python.org/2/library/functions.html#bool]) – Request a durable exchange

	auto_delete (bool [https://docs.python.org/2/library/functions.html#bool]) – Automatically delete when not in use

	arguments (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Optional key/value arguments

	
bind(source, routing_key=None)

	Bind to another exchange with the routing key.

	Parameters

	
	source (str or rabbitpy.Exchange) – The exchange to bind to

	routing_key (str [https://docs.python.org/2/library/functions.html#str]) – The routing key to use

	
declare(passive=False)

	Declare the exchange with RabbitMQ. If passive is True and the
command arguments do not match, the channel will be closed.

	Parameters

	passive (bool [https://docs.python.org/2/library/functions.html#bool]) – Do not actually create the exchange

	
delete(if_unused=False)

	Delete the exchange from RabbitMQ.

	Parameters

	if_unused (bool [https://docs.python.org/2/library/functions.html#bool]) – Delete only if unused

	
unbind(source, routing_key=None)

	Unbind the exchange from the source exchange with the
routing key. If routing key is None, use the queue or exchange name.

	Parameters

	
	source (str or rabbitpy.Exchange) – The exchange to unbind from

	routing_key (str [https://docs.python.org/2/library/functions.html#str]) – The routing key that binds them

	
class rabbitpy.TopicExchange(channel, name, durable=False, auto_delete=False, arguments=None)

	The TopicExchange class is used for interacting with topic exchanges
only.

	Parameters

	
	channel (rabbitpy.channel.Channel) – The channel object to communicate on

	name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the exchange

	durable (bool [https://docs.python.org/2/library/functions.html#bool]) – Request a durable exchange

	auto_delete (bool [https://docs.python.org/2/library/functions.html#bool]) – Automatically delete when not in use

	arguments (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Optional key/value arguments

	
bind(source, routing_key=None)

	Bind to another exchange with the routing key.

	Parameters

	
	source (str or rabbitpy.Exchange) – The exchange to bind to

	routing_key (str [https://docs.python.org/2/library/functions.html#str]) – The routing key to use

	
declare(passive=False)

	Declare the exchange with RabbitMQ. If passive is True and the
command arguments do not match, the channel will be closed.

	Parameters

	passive (bool [https://docs.python.org/2/library/functions.html#bool]) – Do not actually create the exchange

	
delete(if_unused=False)

	Delete the exchange from RabbitMQ.

	Parameters

	if_unused (bool [https://docs.python.org/2/library/functions.html#bool]) – Delete only if unused

	
unbind(source, routing_key=None)

	Unbind the exchange from the source exchange with the
routing key. If routing key is None, use the queue or exchange name.

	Parameters

	
	source (str or rabbitpy.Exchange) – The exchange to unbind from

	routing_key (str [https://docs.python.org/2/library/functions.html#str]) – The routing key that binds them

Message

The Message class is used to create messages that you intend to publish to RabbitMQ and is created when a message is received by RabbitMQ by a consumer or as the result of a Queue.get() request.

API Documentation

	
class rabbitpy.Message(channel, body_value, properties=None, auto_id=False, opinionated=False)

	Created by both rabbitpy internally when a message is delivered or
returned from RabbitMQ and by implementing applications, the Message class
is used to publish a message to and access and respond to a message from
RabbitMQ.

When specifying properties for a message, pass in a dict of key value items
that match the AMQP Basic.Properties specification with a small caveat.

Due to an overlap in the AMQP specification and the Python keyword
type, the type property is referred to as
message_type.

The following is a list of the available properties:

	app_id

	content_type

	content_encoding

	correlation_id

	delivery_mode

	expiration

	headers

	message_id

	message_type

	priority

	reply_to

	timestamp

	user_id

Automated features

When passing in the body value, if it is a dict or list, it will
automatically be JSON serialized and the content type application/json
will be set on the message properties.

When publishing a message to RabbitMQ, if the opinionated value is True
and no message_id value was passed in as a property, a UUID will be
generated and specified as a property of the message.

Additionally, if opinionated is True and the timestamp property
is not specified when passing in properties, the current Unix epoch
value will be set in the message properties.

Note

As of 0.21.0 auto_id is deprecated in favor of

opinionated and it will be removed in a future version. As of
0.22.0 opinionated is defaulted to False.

	Parameters

	
	channel (rabbitpy.channel.Channel) – The channel object for the message object to act upon

	body_value (str|bytes|unicode|memoryview|dict|json) – The message body

	properties (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – A dictionary of message properties

	auto_id (bool [https://docs.python.org/2/library/functions.html#bool]) – Add a message id if no properties were passed in.

	opinionated (bool [https://docs.python.org/2/library/functions.html#bool]) – Automatically populate properties if True

	Raises

	KeyError – Raised when an invalid property is passed in

	
ack(all_previous=False)

	Acknowledge receipt of the message to RabbitMQ. Will raise an
ActionException if the message was not received from a broker.

	Raises

	ActionException

	
delivery_tag

	Return the delivery tag for a message that was delivered or gotten
from RabbitMQ.

	Return type

	int [https://docs.python.org/2/library/functions.html#int] or None [https://docs.python.org/2/library/constants.html#None]

	
exchange

	Return the source exchange for a message that was delivered or
gotten from RabbitMQ.

	Return type

	string or None [https://docs.python.org/2/library/constants.html#None]

	
json()

	Deserialize the message body if it is JSON, returning the value.

	Return type

	any

	
nack(requeue=False, all_previous=False)

	Negatively acknowledge receipt of the message to RabbitMQ. Will
raise an ActionException if the message was not received from a broker.

	Parameters

	
	requeue (bool [https://docs.python.org/2/library/functions.html#bool]) – Requeue the message

	all_previous (bool [https://docs.python.org/2/library/functions.html#bool]) – Nack all previous unacked messages up to and
including this one

	Raises

	ActionException

	
pprint(properties=False)

	Print a formatted representation of the message.

	Parameters

	properties (bool [https://docs.python.org/2/library/functions.html#bool]) – Include properties in the representation

	
publish(exchange, routing_key='', mandatory=False, immediate=False)

	Publish the message to the exchange with the specified routing
key.

In Python 2 if the message is a unicode value it will be converted
to a str using str.encode('UTF-8'). If you do not want the
auto-conversion to take place, set the body to a str or bytes
value prior to publishing.

In Python 3 if the message is a str value it will be converted to
a bytes value using bytes(value.encode('UTF-8')). If you do
not want the auto-conversion to take place, set the body to a
bytes value prior to publishing.

	Parameters

	
	exchange (str or rabbitpy.Exchange) – The exchange to publish the message to

	routing_key (str [https://docs.python.org/2/library/functions.html#str]) – The routing key to use

	mandatory (bool [https://docs.python.org/2/library/functions.html#bool]) – Requires the message is published

	immediate (bool [https://docs.python.org/2/library/functions.html#bool]) – Request immediate delivery

	Returns

	bool or None

	Raises

	rabbitpy.exceptions.MessageReturnedException

	
redelivered

	Indicates if this message may have been delivered before (but not
acknowledged)”

	Return type

	bool [https://docs.python.org/2/library/functions.html#bool] or None [https://docs.python.org/2/library/constants.html#None]

	
reject(requeue=False)

	Reject receipt of the message to RabbitMQ. Will raise
an ActionException if the message was not received from a broker.

	Parameters

	requeue (bool [https://docs.python.org/2/library/functions.html#bool]) – Requeue the message

	Raises

	ActionException

	
routing_key

	Return the routing_key for a message that was delivered or gotten
from RabbitMQ.

	Return type

	int [https://docs.python.org/2/library/functions.html#int] or None [https://docs.python.org/2/library/constants.html#None]

Queue

The Queue class is used to work with RabbitMQ queues on an open channel. The following example shows how you can create a queue using the Queue.declare method.

import rabbitpy

with rabbitpy.Connection() as connection:
 with connection.channel() as channel:
 queue = rabbitpy.Queue(channel, 'my-queue')
 queue.durable = True
 queue.declare()

To consume messages you can iterate over the Queue object itself if the defaults for the Queue.__iter__() method work for your needs:

with conn.channel() as channel:
 for message in rabbitpy.Queue(channel, 'example'):
 print 'Message: %r' % message
 message.ack()

or by the Queue.consume() method if you would like to specify no_ack, prefetch_count, or priority:

with conn.channel() as channel:
 queue = rabbitpy.Queue(channel, 'example')
 for message in queue.consume():
 print 'Message: %r' % message
 message.ack()

Warning

If you use either the Queue as an iterator method or Queue.consume() method of consuming messages in PyPy,
you must manually invoke Queue.stop_consuming(). This is due to PyPy not predictably cleaning up after the generator
used for allowing the iteration over messages. Should your code want to test to see if the code is being executed in PyPy,
you can evaluate the boolean rabbitpy.PYPY constant value.

API Documentation

	
class rabbitpy.Queue(channel, name='', durable=False, exclusive=False, auto_delete=False, max_length=None, message_ttl=None, expires=None, dead_letter_exchange=None, dead_letter_routing_key=None, arguments=None)

	Create and manage RabbitMQ queues.

	Parameters

	
	channel (Channel) – The channel object to communicate on

	name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the queue

	exclusive (bool [https://docs.python.org/2/library/functions.html#bool]) – Queue can only be used by this channel and will
auto-delete once the channel is closed.

	durable (bool [https://docs.python.org/2/library/functions.html#bool]) – Indicates if the queue should survive a RabbitMQ is restart

	auto_delete (bool [https://docs.python.org/2/library/functions.html#bool]) – Automatically delete when all consumers disconnect

	max_length (int [https://docs.python.org/2/library/functions.html#int]) – Maximum queue length

	message_ttl (int [https://docs.python.org/2/library/functions.html#int]) – Time-to-live of a message in milliseconds

	expires (int [https://docs.python.org/2/library/functions.html#int]) – Milliseconds until a queue is removed after becoming idle

	dead_letter_exchange (str [https://docs.python.org/2/library/functions.html#str]) – Dead letter exchange for rejected messages

	dead_letter_routing_key (str [https://docs.python.org/2/library/functions.html#str]) – Routing key for dead lettered messages

	arguments (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Custom arguments for the queue

	Raises

	RemoteClosedChannelException

	Raises

	RemoteCancellationException

	
__init__(channel, name='', durable=False, exclusive=False, auto_delete=False, max_length=None, message_ttl=None, expires=None, dead_letter_exchange=None, dead_letter_routing_key=None, arguments=None)

	Create a new Queue object instance. Only the
rabbitpy.Channel object is required.

Warning

You should only use a single
Queue instance per channel
when consuming or getting messages. Failure to do so can
have unintended consequences.

	
__iter__()

	Quick way to consume messages using defaults of no_ack=False,
prefetch and priority not set.

Warning

You should only use a single Queue
instance per channel when consuming messages. Failure to do so can
have unintended consequences.

	Yields

	Message

	
__len__()

	Return the pending number of messages in the queue by doing a
passive Queue declare.

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

	
__setattr__(name, value)

	Validate the data types for specific attributes when setting them,
otherwise fall throw to the parent __setattr__

	Parameters

	
	name (str [https://docs.python.org/2/library/functions.html#str]) – The attribute to set

	value (mixed) – The value to set

	Raises

	ValueError

	
bind(source, routing_key=None, arguments=None)

	Bind the queue to the specified exchange or routing key.

	Parameters

	
	source (str or rabbitpy.exchange.Exchange exchange) – The exchange to bind to

	routing_key (str [https://docs.python.org/2/library/functions.html#str]) – The routing key to use

	arguments (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Optional arguments for for RabbitMQ

	Returns

	bool

	
consume(no_ack=False, prefetch=None, priority=None)

	Consume messages from the queue as a generator:

You can use this method instead of the queue object as an iterator
if you need to alter the prefect count, set the consumer priority or
consume in no_ack mode.

New in version 0.26.

Warning

You should only use a single Queue
instance per channel when consuming messages. Failure to do so can
have unintended consequences.

	Parameters

	
	no_ack (bool [https://docs.python.org/2/library/functions.html#bool]) – Do not require acknowledgements

	prefetch (int [https://docs.python.org/2/library/functions.html#int]) – Set a prefetch count for the channel

	priority (int [https://docs.python.org/2/library/functions.html#int]) – Consumer priority

	Return type

	generator

	Raises

	RemoteCancellationException

	
consume_messages(no_ack=False, prefetch=None, priority=None)

	Consume messages from the queue as a generator.

Warning

This method is deprecated in favor of
Queue.consume() and will be removed in future releases.

Deprecated since version 0.26.

You can use this message instead of the queue object as an iterator
if you need to alter the prefect count, set the consumer priority or
consume in no_ack mode.

	Parameters

	
	no_ack (bool [https://docs.python.org/2/library/functions.html#bool]) – Do not require acknowledgements

	prefetch (int [https://docs.python.org/2/library/functions.html#int]) – Set a prefetch count for the channel

	priority (int [https://docs.python.org/2/library/functions.html#int]) – Consumer priority

	Return type

	Generator

	Raises

	RemoteCancellationException

	
consumer(no_ack=False, prefetch=None, priority=None)

	Method for returning the contextmanager for consuming messages. You
should not use this directly.

Warning

This method is deprecated and will be removed in a future
release.

Deprecated since version 0.26.

	Parameters

	
	no_ack (bool [https://docs.python.org/2/library/functions.html#bool]) – Do not require acknowledgements

	prefetch (int [https://docs.python.org/2/library/functions.html#int]) – Set a prefetch count for the channel

	priority (int [https://docs.python.org/2/library/functions.html#int]) – Consumer priority

	Returns

	None

	
declare(passive=False)

	Declare the queue on the RabbitMQ channel passed into the
constructor, returning the current message count for the queue and
its consumer count as a tuple.

	Parameters

	passive (bool [https://docs.python.org/2/library/functions.html#bool]) – Passive declare to retrieve message count and
consumer count information

	Returns

	Message count, Consumer count

	Return type

	tuple(int [https://docs.python.org/2/library/functions.html#int], int [https://docs.python.org/2/library/functions.html#int])

	
delete(if_unused=False, if_empty=False)

	Delete the queue

	Parameters

	
	if_unused (bool [https://docs.python.org/2/library/functions.html#bool]) – Delete only if unused

	if_empty (bool [https://docs.python.org/2/library/functions.html#bool]) – Delete only if empty

	
get(acknowledge=True)

	Request a single message from RabbitMQ using the Basic.Get AMQP
command.

Warning

You should only use a single Queue
instance per channel when getting messages. Failure to do so can
have unintended consequences.

	Parameters

	acknowledge (bool [https://docs.python.org/2/library/functions.html#bool]) – Let RabbitMQ know if you will manually
acknowledge or negatively acknowledge the
message after each get.

	Return type

	Message or None

	
ha_declare(nodes=None)

	Declare a the queue as highly available, passing in a list of nodes
the queue should live on. If no nodes are passed, the queue will be
declared across all nodes in the cluster.

	Parameters

	nodes (list) – A list of nodes to declare. If left empty, queue
will be declared on all cluster nodes.

	Returns

	Message count, Consumer count

	Return type

	tuple(int [https://docs.python.org/2/library/functions.html#int], int [https://docs.python.org/2/library/functions.html#int])

	
purge()

	Purge the queue of all of its messages.

	
stop_consuming()

	Stop consuming messages. This is usually invoked if you want to
cancel your consumer from outside the context manager or generator.

If you invoke this, there is a possibility that the generator method
will return None instead of a rabbitpy.Message.

	
unbind(source, routing_key=None)

	Unbind queue from the specified exchange where it is bound the
routing key. If routing key is None, use the queue name.

	Parameters

	
	source (str or rabbitpy.exchange.Exchange exchange) – The exchange to unbind from

	routing_key (str [https://docs.python.org/2/library/functions.html#str]) – The routing key that binds them

Transactions

The Tx or transaction class implements transactional functionality with RabbitMQ and allows for any AMQP command to be issued, then committed or rolled back.

It can be used as a normal Python object:

with rabbitpy.Connection() as connection:
 with connection.channel() as channel:
 tx = rabbitpy.Tx(channel)
 tx.select()
 exchange = rabbitpy.Exchange(channel, 'my-exchange')
 exchange.declare()
 tx.commit()

Or as a context manager (See PEP 0343 [https://www.python.org/dev/peps/pep-0343]) where the transaction will automatically be started and committed for you:

with rabbitpy.Connection() as connection:
 with connection.channel() as channel:
 with rabbitpy.Tx(channel) as tx:
 exchange = rabbitpy.Exchange(channel, 'my-exchange')
 exchange.declare()

In the event of an exception exiting the block when used as a context manager, the transaction will be rolled back for you automatically.

API Documentation

	
class rabbitpy.Tx(channel)

	Work with transactions

The Tx class allows publish and ack operations to be batched into atomic
units of work. The intention is that all publish and ack requests issued
within a transaction will complete successfully or none of them will.
Servers SHOULD implement atomic transactions at least where all publish or
ack requests affect a single queue. Transactions that cover multiple
queues may be non-atomic, given that queues can be created and destroyed
asynchronously, and such events do not form part of any transaction.
Further, the behaviour of transactions with respect to the immediate and
mandatory flags on Basic.Publish methods is not defined.

	Parameters

	channel (rabbitpy.channel.Channel) – The channel object to start the transaction on

	
commit()

	Commit the current transaction

This method commits all message publications and acknowledgments
performed in the current transaction. A new transaction starts
immediately after a commit.

	Raises

	rabbitpy.exceptions.NoActiveTransactionError

	Return type

	bool [https://docs.python.org/2/library/functions.html#bool]

	
rollback()

	Abandon the current transaction

This method abandons all message publications and acknowledgments
performed in the current transaction. A new transaction starts
immediately after a rollback. Note that unacked messages will not be
automatically redelivered by rollback; if that is required an explicit
recover call should be issued.

	Raises

	rabbitpy.exceptions.NoActiveTransactionError

	Return type

	bool [https://docs.python.org/2/library/functions.html#bool]

	
select()

	Select standard transaction mode

This method sets the channel to use standard transactions. The client
must use this method at least once on a channel before using the Commit
or Rollback methods.

	Return type

	bool [https://docs.python.org/2/library/functions.html#bool]

Message Consumer

The following example will subscribe to a queue named “example” and consume messages
until CTRL-C is pressed:

import rabbitpy

with rabbitpy.Connection('amqp://guest:guest@localhost:5672/%2f') as conn:
 with conn.channel() as channel:
 queue = rabbitpy.Queue(channel, 'example')

 # Exit on CTRL-C
 try:
 # Consume the message
 for message in queue:
 message.pprint(True)
 message.ack()

 except KeyboardInterrupt:
 print 'Exited consumer'

Message Getter

The following example will get a single message at a time from the “example” queue
as long as there are messages in it. It uses len(queue) to check the current
queue depth while it is looping:

import rabbitpy

with rabbitpy.Connection('amqp://guest:guest@localhost:5672/%2f') as conn:
 with conn.channel() as channel:
 queue = rabbitpy.Queue(channel, 'example')
 while len(queue) > 0:
 message = queue.get()
 message.pprint(True)
 message.ack()
 print('There are {} more messages in the queue'.format(len(queue)))

Declaring HA Queues

The following example will create a HA queue on each node in a RabbitMQ cluster.:

import rabbitpy

with rabbitpy.Connection('amqp://guest:guest@localhost:5672/%2f') as conn:
 with conn.channel() as channel:
 queue = rabbitpy.Queue(channel, 'example')
 queue.ha_declare()

Mandatory Publishing

The following example uses RabbitMQ’s Publisher Confirms feature to allow for validation
that the message was successfully published:

import rabbitpy

Connect to RabbitMQ on localhost, port 5672 as guest/guest
with rabbitpy.Connection('amqp://guest:guest@localhost:5672/%2f') as conn:

 # Open the channel to communicate with RabbitMQ
 with conn.channel() as channel:

 # Turn on publisher confirmations
 channel.enable_publisher_confirms()

 # Create the message to publish
 message = rabbitpy.Message(channel, 'message body value')

 # Publish the message, looking for the return value to be a bool True/False
 if message.publish('test_exchange', 'test-routing-key', mandatory=True):
 print 'Message publish confirmed by RabbitMQ'
 else:
 print 'RabbitMQ indicates message publishing failure'

Transactional Publisher

The following example uses RabbitMQ’s Transactions feature to send the message,
then roll it back:

import rabbitpy

Connect to RabbitMQ on localhost, port 5672 as guest/guest
with rabbitpy.Connection('amqp://guest:guest@localhost:5672/%2f') as conn:

 # Open the channel to communicate with RabbitMQ
 with conn.channel() as channel:

 # Start the transaction
 tx = rabbitpy.Tx(channel)
 tx.select()

 # Create the message to publish & publish it
 message = rabbitpy.Message(channel, 'message body value')
 message.publish('test_exchange', 'test-routing-key')

 # Rollback the transaction
 tx.rollback()

 Python Module Index

 r

 		 	

 		
 r	

 	[image: -]
 	
 rabbitpy	

 	
 	
 rabbitpy.exceptions	

 	
 	
 rabbitpy.simple	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U

_

 	
 	__init__() (rabbitpy.Queue method)

 	__iter__() (rabbitpy.Queue method)

 	
 	__len__() (rabbitpy.Queue method)

 	__setattr__() (rabbitpy.Queue method)

A

 	
 	ack() (rabbitpy.Message method)

 	ActionException

 	AMQP (class in rabbitpy)

 	AMQPAccessRefused

 	AMQPChannelError

 	AMQPCommandInvalid

 	AMQPConnectionForced

 	AMQPContentTooLarge

 	AMQPException

 	AMQPFrameError

 	AMQPInternalError

 	
 	AMQPInvalidPath

 	AMQPNoConsumers

 	AMQPNoRoute

 	AMQPNotAllowed

 	AMQPNotFound

 	AMQPNotImplemented

 	AMQPPreconditionFailed

 	AMQPResourceError

 	AMQPResourceLocked

 	AMQPSyntaxError

 	AMQPUnexpectedFrame

 	args (rabbitpy.Connection attribute)

B

 	
 	basic_ack() (rabbitpy.AMQP method)

 	basic_cancel() (rabbitpy.AMQP method)

 	basic_consume() (rabbitpy.AMQP method)

 	basic_get() (rabbitpy.AMQP method)

 	basic_nack() (rabbitpy.AMQP method)

 	basic_publish() (rabbitpy.AMQP method)

 	basic_qos() (rabbitpy.AMQP method)

 	basic_recover() (rabbitpy.AMQP method)

 	
 	basic_reject() (rabbitpy.AMQP method)

 	bind() (rabbitpy.DirectExchange method)

 	(rabbitpy.Exchange method)

 	(rabbitpy.FanoutExchange method)

 	(rabbitpy.HeadersExchange method)

 	(rabbitpy.Queue method)

 	(rabbitpy.TopicExchange method)

 	blocked (rabbitpy.Connection attribute)

C

 	
 	capabilities (rabbitpy.Connection attribute)

 	Channel (class in rabbitpy)

 	channel() (rabbitpy.Connection method)

 	ChannelClosedException

 	close() (rabbitpy.Channel method)

 	(rabbitpy.Connection method)

 	commit() (rabbitpy.Tx method)

 	confirm_select() (rabbitpy.AMQP method)

 	Connection (class in rabbitpy)

 	ConnectionClosed

 	
 	ConnectionException

 	ConnectionResetException

 	consume() (in module rabbitpy.simple)

 	(rabbitpy.Queue method)

 	consume_messages() (rabbitpy.Queue method)

 	consumer() (rabbitpy.Queue method)

 	create_direct_exchange() (in module rabbitpy.simple)

 	create_fanout_exchange() (in module rabbitpy.simple)

 	create_headers_exchange() (in module rabbitpy.simple)

 	create_queue() (in module rabbitpy.simple)

 	create_topic_exchange() (in module rabbitpy.simple)

D

 	
 	declare() (rabbitpy.DirectExchange method)

 	(rabbitpy.Exchange method)

 	(rabbitpy.FanoutExchange method)

 	(rabbitpy.HeadersExchange method)

 	(rabbitpy.Queue method)

 	(rabbitpy.TopicExchange method)

 	delete() (rabbitpy.DirectExchange method)

 	(rabbitpy.Exchange method)

 	(rabbitpy.FanoutExchange method)

 	(rabbitpy.HeadersExchange method)

 	(rabbitpy.Queue method)

 	(rabbitpy.TopicExchange method)

 	
 	delete_exchange() (in module rabbitpy.simple)

 	delete_queue() (in module rabbitpy.simple)

 	delivery_tag (rabbitpy.Message attribute)

 	DirectExchange (class in rabbitpy)

E

 	
 	enable_publisher_confirms() (rabbitpy.Channel method)

 	Exchange (class in rabbitpy)

 	exchange (rabbitpy.Message attribute)

 	
 	exchange_bind() (rabbitpy.AMQP method)

 	exchange_declare() (rabbitpy.AMQP method)

 	exchange_delete() (rabbitpy.AMQP method)

 	exchange_unbind() (rabbitpy.AMQP method)

F

 	
 	FanoutExchange (class in rabbitpy)

G

 	
 	get() (in module rabbitpy.simple)

 	(rabbitpy.Queue method)

H

 	
 	ha_declare() (rabbitpy.Queue method)

 	
 	HeadersExchange (class in rabbitpy)

I

 	
 	id (rabbitpy.Channel attribute)

J

 	
 	json() (rabbitpy.Message method)

M

 	
 	maximum_frame_size (rabbitpy.Channel attribute)

 	
 	Message (class in rabbitpy)

 	MessageReturnedException

N

 	
 	nack() (rabbitpy.Message method)

 	NoActiveTransactionError

 	
 	NotConsumingError

 	NotSupportedError

O

 	
 	open() (rabbitpy.Channel method)

P

 	
 	pprint() (rabbitpy.Message method)

 	prefetch_count() (rabbitpy.Channel method)

 	prefetch_size() (rabbitpy.Channel method)

 	publish() (in module rabbitpy.simple)

 	(rabbitpy.Message method)

 	
 	publisher_confirms (rabbitpy.Channel attribute)

 	purge() (rabbitpy.Queue method)

 	
 Python Enhancement Proposals

 	PEP 0343, [1], [2]

Q

 	
 	Queue (class in rabbitpy)

 	queue_bind() (rabbitpy.AMQP method)

 	queue_declare() (rabbitpy.AMQP method)

 	
 	queue_delete() (rabbitpy.AMQP method)

 	queue_purge() (rabbitpy.AMQP method)

 	queue_unbind() (rabbitpy.AMQP method)

R

 	
 	rabbitpy.exceptions (module)

 	rabbitpy.simple (module)

 	RabbitpyException

 	recover() (rabbitpy.Channel method)

 	redelivered (rabbitpy.Message attribute)

 	
 	reject() (rabbitpy.Message method)

 	RemoteCancellationException

 	RemoteClosedChannelException

 	RemoteClosedException

 	rollback() (rabbitpy.Tx method)

 	routing_key (rabbitpy.Message attribute)

S

 	
 	select() (rabbitpy.Tx method)

 	server_properties (rabbitpy.Connection attribute)

 	
 	SimpleChannel (class in rabbitpy.simple)

 	stop_consuming() (rabbitpy.Queue method)

T

 	
 	TooManyChannelsError

 	TopicExchange (class in rabbitpy)

 	Tx (class in rabbitpy)

 	
 	tx_commit() (rabbitpy.AMQP method)

 	tx_rollback() (rabbitpy.AMQP method)

 	tx_select() (rabbitpy.AMQP method)

U

 	
 	unbind() (rabbitpy.DirectExchange method)

 	(rabbitpy.Exchange method)

 	(rabbitpy.FanoutExchange method)

 	(rabbitpy.HeadersExchange method)

 	(rabbitpy.Queue method)

 	(rabbitpy.TopicExchange method)

 	
 	UnexpectedResponseError

Version History

	
	2.0.1 - released 2019-08-06

	
	Fixed an issue with the IO loop poller on MacOS (#111)

	
	2.0.0 - released 2019-04-19

	
	
	Updated to use pamqp>=2.3,<3 which has the following implications:

	
	Field table keys are now strings and no longer bytes. This may be a breaking change means in Python3 keys will always be type str for short strings. This includes frame values and field table values.

	In Python 2.7 if a short-string (key, frame field value, etc) has UTF-8 characters in it, it will be a unicode object.

	field-table integer encoding changes

	Drops support for Python < 3.4

	Adds support for Python 3.6 and 3.7

	
	1.0.0 - released 2016-10-27

	
	Reworked Heartbeat logic to send a heartbeat every interval / 2 seconds when data has not been written to the socket (#70, #74, #98, #99)

	Improved performance when consuming large mesages (#104) - Jelle Aalbers [https://github.com/JelleAalbers]

	Allow for username and password to be default again (#96, #97) - Grzegorz Śliwiński [https://github.com/fizyk]

	Cleanup of Connection and Channel teardown (#103)

	
	0.27.1 - released 2016-05-12

	
	Fix a bug where the IO write trigger socketpair is not being cleaned up on close

	
	0.27.0 - released 2016-05-11

	
	Added new SimpleChannel class

	Exception formatting changes

	Thread locking optimizations

	Connection shutdown cleanup

	Message now assigns a UTC timestamp instead of local timestamp to the AMQP message property if requested (#94)

	Unquote username and password in URI (#93) - sunbit [https://github.com/sunbit]

	Connections now allow for a configurable timeout (#84, #85) - vmarkovtsev [https://github.com/vmarkovtsev]

	Bugfix for basic_publish() (#92) - canardleteer [https://github.com/canardleteer]

	Added args property to Connection (#88) - vmarkovtsev [https://github.com/vmarkovtsev]

	Fix locale in connection setup from causing hanging (#87) - vmarkovtsev [https://github.com/vmarkovtsev]

	Fix heartbeat behavior (#69, #70, #74)

	Cancel consuming in case of exceptions (#68) - kmelnikov [https://github.com/kmelnikov]

	Documentation correction (#79) - jonahbull [https://github.com/jonahbull]

	
	0.26.2 - released 2015-03-17

	
	Fix behavior for Basic.Return frames sent from RabbitMQ

	Pin pamqp 1.6.1 fixing an issue with max-channels

	
	0.26.1 - released 2015-03-09

	
	Add the ability to interrupt rabbitpy when waiting on a frame (#38)

	Use a custom base class for all Exceptions (#57) Jeremy Tillman

	Fix for consumer example in documentation (#60) Michael Becker

	Add rabbitpy.amqp module for unopinionated access to AMQP API

	Refactor how client side heartbeat checking is managed when no heartbeat frames have been sent from the server. (#58)

	Address an issue when client side channel max count is not set and server side channel max is set to 65535 (#62)

	Clean up handling of remote channel and connection closing

	Clean up context manager exiting for rabbitpy.Queue

	Remove default prefetch count for simple consuming

	
	Fix URI query parameter names to match AMQP URI spec on rabbitmq.com

	
	Fix behavior of SSL flags in query parameters (#63, #64)

	PYPY behavior fixes related to garbage collection

	
	0.25.0 - released 2014-12-16

	
	Acquire a lock when creating a new channel to fix multi-threaded channel creation behavior (#56)

	Add client side heartbeat checking. If 2 heartbeats are missed, a ConnectionResetException exception will be raised (#55)

	Fix a bug where Basic.Nack checking was checking for the wrong string to test for support

	Add support for Python3 memoryviews for the message body when creating a new rabbitpy.Message (#50)

	Improve Python3 behavior in rabbitpy.utils.maybe_utf8_encode: ensure the object being cast as a bytes object with utf-8 encoding is a string

	
	0.24.0 - released 2014-12-12

	
	
	Update to reflect changes in pamqp 1.6.0

	
	Update how message property data types are retrieved

	Fix tests relying on .__dict__

	
	0.23.0 - released 2014-11-5

	
	Fix a bug where message body length was being assigned to the content header prior to converting the unicode string to bytes (#49)

	Add a new rabbitpy.utils.maybe_utf8_encode method for handling strings that may or may not contain unicode (#49)

	Fix the automatic coercion of header types to UTF-8 encoded bytes (#49)

	Fix an integration test that was not cleaning up its queue after itself

	Raise TypeError if a timestamp property can not be converted properly

	
	0.22.0 - released 2014-11-4

	
	Address an issue when RabbitMQ is configured with a max-frame-size of 0 (#48)

	Do not lose the traceback when exiting a context manager due to a an exception (#46)

	Adds server capability checking in rabbitpy.Channel methods that require RabbitMQ enhancements to the AMQP protocol (Publisher confirms, consumer priorities, & Baisc.Nack). If unsupported functionality is used, a rabbitpy.exceptions.NotSupportedError exception will be raised.

	Pin pamqp version range to >= 1.4, < 2.0

	Fix wheel distribution

	
	0.21.1 - released 2014-10-23

	
	Clean up KQueue issues found when troubleshooting #44, checking for socket EOF in flags to detect connection reset

	Remove sockets from KQueue when in error state

	Change behavior when there is a poll exception list

	Handle socket connect errors more cleanly (#44)

	Handle bug for how we pull the error string from an exception in IO.on_error (#44)

	Re-raise exceptions causing the exit of Connection or Channel so they can be cleanly caught (#44)

	
	0.21.0 - released 2014-10-21

	
	Address a possible edge case where message frames can be interspersed when publishing in a multi-threaded environment

	Add exception handling around select.error (#43)

	Check all frames for Channel.CloseOk when consuming

	Add a new opinionated flag in rabbitpy.Message construction that deprecates the auto_id flag

	Add wheel distribution

	
	0.20.0 - released 2014-10-01

	
	Added support for KQueue and Poll in IOLoop for performance improvements

	Fixed issues with publishing large messages and socket resource availability errors (#37)

	Add exchange property to rabbitpy.Message (#40)

	Fix exception when timestamp is None in received Message (#41)

	Fix rabbitpy.Message.json() in Python 3.4 (#42)

	Add out-of-band consumer cancellation with Queue.stop_consuming() (#38, #39)

	Add new simple method rabbitpy.create_headers_exchange()

	Significantly increase test coverage

	
	0.19.0 - released 2014-06-30

	
	Fix the socket read/write buffer size (#35)

	Add new flag in channels to use blocking queue.get operations increasing throughput and lowering overhead.

	
	0.18.1 - released 2014-05-15

	
	Fix unicode message body encoding in Python 2

	
	0.18.0 - released 2014-05-15

	
	Make IO thread daemonic

	block on RPC reads for 1 second instead of 100ms

	add the Message.redelivered property

	
	0.17.0 - released 2014-04-16

	
	Refactor cross-thread communication for RabbitMQ invoked RPC methods

	fix unclean shutdown conditions and cross-thread exceptions

	
	0.16.0 - released 2014-04-10

	
	Fix an issue with no_ack=True consumer cancellation

	Fix exchange and queue unbinding

	Add wait on the SOCKET_OPENED event when connecting

	Deal with str message body values in Python 3 by casting to bytes and encoding as UTF-8.

	
	0.15.1 - released 2014-01-27

	
	Fix an issue with Python 3 IO write trigger

	
	0.15.0 - released 2014-01-27

	
	Change default durability for Exchange and Queue to False

	Fix a SSL connection issue

	
	0.14.2 - released 2014-01-23

	
	Fix an issue when IPv6 is the default protocol for the box rabbitpy is being used on

	
	0.14.1 - released 2014-01-23

	
	Assign queue name for RabbitMQ named queues in rabbitpy.Queue.declare

	
	0.14.0 - released 2014-01-22

	
	Add support for authentication_failure_close

	Add consumer priorities

	Exception cleanup

	Queue consuming via Queue.__iter__

	Queue & Exchange attributes are no longer private

	Tx objects can be used as a context manager

	Experimental support for Windows.

	
	0.13.0 - released 2014-01-17

	
	Validate heartbeat is always an integer

	add arguments to Queue for expires, message-ttl, max-length, & dead-lettering

	
	0.12.3 - released 2013-12-23

	
	Minor Message.pprint() reformatting

	
	0.12.2 - released 2013-12-23

	
	Add Exchange and Routing Key to Message.pprint, check for empty method frames in Channel._create_message

	
	0.12.1 - released 2013-12-19

	
	Fix exception with pika.exceptions.AMQP

	
	0.12.0 - released 2013-12-19

	
	Updated simple consumer to potential one-liner

	Added rabbitpy.Message.pprint()

	
	0.11.0 - released 2013-12-19

	
	Major bugfix focused on receiving multiple AMQP frames at the same time.

	Add auto-coercion of property data-types.

	
	0.10.0 - released 2013-12-11

	
	Rewrite of IO layer yielding improved performance and reduction of CPU usage, bugfixes

	
	0.9.0 - released 2013-10-02

	
	Major performance improvements, CPU usage reduction, minor bug-fixes

	
	0.8.0 - released 2013-10-01

	
	Major bugfixes

	IPv6 support

	
	0.7.0 - released 2013-10-01

	
	Bugfixes and code cleanup.

	Most notable fix around Basic.Return and recursion in Channel._wait_on_frame.

	
	0.6.0 - released 2013-09-30

	
	Bugfix with Queue.get()

	Bugfix with RPC requests expecting multiple responses

	Add Queue.consume_messages() method.

	
	0.5.1 - released 2013-09-24

	
	Installer/setup fix

	
	0.5.0 - released 2013-09-23

	
	Bugfix release including low level socket sending fix and connection timeouts.

	
	< 0.5.0

	
	Previously called rmqid

Multi-threaded Use Notes

To ensure that the network communication module at the core of rabbitpy is
thread safe, the rabbitpy.io.IO class is a daemonic Python thread
that uses a combination of threading.Event [https://docs.python.org/2/library/threading.html#threading.Event], Queue.Queue [https://docs.python.org/2/library/queue.html#Queue.Queue],
and a local cross-platform implementation of a read-write socket pair in
rabbitpy.IO.write_trigger.

While ensuring that the core socket IO and dispatching of AMQP frames across
threads goes a long way to make sure that multi-threaded applications can safely
use rabbitpy, it does not protect against cross-thread channel utilization.

Due to the way that channels events are managed, it is recommend that you restrict
the use of a channel to an individual thread. By not sharing channels across
threads, you will ensure that you do not accidentally create issues with
channel state in the AMQP protocol. As an asynchronous RPC style protocol, when
you issue commands, such as a queue declaration, or are publishing a message,
there are expectations in the conversation on a channel about the order of
events and frames sent and received.

The following example uses the main Python thread to connect to RabbitMQ and
then spawns a thread for publishing and a thread for consuming.

import rabbitpy
import threading

EXCHANGE = 'threading_example'
QUEUE = 'threading_queue'
ROUTING_KEY = 'test'
MESSAGE_COUNT = 100

def consumer(connection):
 """Consume MESSAGE_COUNT messages on the connection and then exit.

 :param rabbitpy.Connection connection: The connection to consume on

 """
 received = 0
 with connection.channel() as channel:
 for message in rabbitpy.Queue(channel, QUEUE).consume_messages():
 print message.body
 message.ack()
 received += 1
 if received == MESSAGE_COUNT:
 break

def publisher(connection):
 """Pubilsh up to MESSAGE_COUNT messages on connection
 on an individual thread.

 :param rabbitpy.Connection connection: The connection to publish on

 """
 with connection.channel() as channel:
 for index in range(0, MESSAGE_COUNT):
 message = rabbitpy.Message(channel, 'Message #%i' % index)
 message.publish(EXCHANGE, ROUTING_KEY)

Connect to RabbitMQ
with rabbitpy.Connection() as connection:

 # Open the channel, declare and bind the exchange and queue
 with connection.channel() as channel:

 # Declare the exchange
 exchange = rabbitpy.Exchange(channel, EXCHANGE)
 exchange.declare()

 # Declare the queue
 queue = rabbitpy.Queue(channel, QUEUE)
 queue.declare()

 # Bind the queue to the exchange
 queue.bind(EXCHANGE, ROUTING_KEY)

 # Pass in the kwargs
 kwargs = {'connection': connection}

 # Start the consumer thread
 consumer_thread = threading.Thread(target=consumer, kwargs=kwargs)
 consumer_thread.start()

 # Start the pubisher thread
 publisher_thread = threading.Thread(target=publisher, kwargs=kwargs)
 publisher_thread.start()

 # Join the consumer thread, waiting for it to consume all MESSAGE_COUNT messages
 consumer_thread.join()

 _static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 rabbitpy: RabbitMQ Simplified

 		
 Simple API Methods

 		
 AMQP Adapter

 		
 Example

 		
 API Documentation

 		
 Channel

 		
 API Documentation

 		
 Connection

 		
 API Documentation

 		
 Exceptions

 		
 Exceptions that may be raised by rabbitpy during use

 		
 Exchange

 		
 API Documentation

 		
 Message

 		
 API Documentation

 		
 Queue

 		
 API Documentation

 		
 Transactions

 		
 API Documentation

 		
 Message Consumer

 		
 Message Getter

 		
 Declaring HA Queues

 		
 Mandatory Publishing

 		
 Transactional Publisher

